Why Do Only Some Galaxy Clusters Have Cool Cores?

نویسندگان

  • Jack O. Burns
  • Eric J. Hallman
چکیده

Flux-limited X-ray samples indicate that about half of rich galaxy clusters have cool cores. Why do only some clusters have cool cores while others do not? In this paper, cosmological N-body + Eulerian hydrodynamic simulations, including radiative cooling and heating, are used to address this question as we examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. These adaptive mesh refinement simulations produce both CC and NCC clusters in the same volume. They have a peak resolution of 15.6 h kpc within a (256 hMpc) box. Our simulations suggest that there are important evolutionary differences between CC clusters and their NCC counterparts. Many of the numerical CC clusters accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, the CC’s survived the collisions. By contrast, NCC clusters experienced major mergers early in their evolution that destroyed embryonic cool cores and produced conditions that prevented CC re-formation. As a result, our simulations predict observationally testable distinctions in the properties of CC and NCC beyond the core regions in clusters. In particular, we find differences between CC versus NCC clusters in the shapes of X-ray surface brightness profiles, between the temperatures and hardness ratios beyond the cores, between the distribution of masses, and between their supercluster environs. It also appears that CC clusters are no closer to hydrostatic equilibrium than NCC clusters, an issue important for precision cosmology measurements. Subject headings: cool cores — galaxies: clusters: general — cosmology: theory — hydrodynamics — methods: numerical — intergalactic medium

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Beyond the Cool Core: The Formation of Cool Core Galaxy Clusters

Why do some clusters have cool cores while others do not? In this paper, cosmological simulations, including radiative cooling and heating, are used to examine the formation and evolution of cool core (CC) and non-cool core (NCC) clusters. Numerical CC clusters at z = 0 accreted mass more slowly over time and grew enhanced cool cores via hierarchical mergers; when late major mergers occurred, t...

متن کامل

On the Formation of Cool, Non-Flowing Cores in Galaxy Clusters via Hierarchical Mergers

We present a new model for the creation of cool cores in rich galaxy clusters within a ΛCDM cosmological framework using the results from high spatial dynamic range, adaptive mesh hydro/N-body simulations. It is proposed that cores of cool gas first form in subclusters and these subclusters merge to create rich clusters with cool, central X-Ray excesses. The rich cool clusters do not possess “c...

متن کامل

Formation of Cool Cores in Galaxy Clusters via Hierarchical Mergers

We present a new scenario for the formation of cool cores in rich galaxy clusters based on results from recent high spatial dynamic range, adaptive mesh Eulerian hydrodynamic simulations of large-scale structure formation. We find that cores of cool gas, material that would be identified as a classical cooling flow based on its X-ray luminosity excess and temperature profile, are built from the...

متن کامل

What is a Cool - Core Cluster ? A Detailed Analysis of the Cores of the X - ray Flux - Limited HIFLUGCS Cluster Sample

We use the largest complete sample of 64 galaxy clusters (HIghest X-ray FLUx Galaxy Cluster Sample) with available highquality X-ray data from Chandra, and apply 16 cool-core diagnostics to them, some of them new. In order to identify the best parameter for characterizing cool-core clusters and quantify its relation to other parameters, we mainly use very high spatial resolution profiles of cen...

متن کامل

On the Origin of Cool Core Galaxy Clusters: Comparing X-ray Observations with Numerical Simulations

To better constrain models of cool core galaxy cluster formation, we have used X-ray observations taken from the Chandra and ROSAT archives to examine the properties of cool core and non-cool core clusters, especially beyond the cluster cores. Using an optimized reduction process, we produced X-ray images, surface brightness profiles, and hardness ratio maps of 30 nearby rich Abell clusters (17...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008